If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2p^2-12p+10=0
a = 2; b = -12; c = +10;
Δ = b2-4ac
Δ = -122-4·2·10
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-8}{2*2}=\frac{4}{4} =1 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+8}{2*2}=\frac{20}{4} =5 $
| .1x+.25x=4 | | 20x-11=69 | | x+30=127 | | -3x^2+18=18 | | 127=x+30 | | 3(x-1)=2(x+9)-7 | | 1+x=8x-24 | | −5(1)+13y=−7 | | -3x^2-15=18 | | 26-8x-40-2x=6 | | 180-120=w | | -9x-x+4+4x=34 | | 3x^2-15=18 | | 5+8w=5w+7 | | -2(x+1)-x=-2x+5 | | h+17/7=3 | | x/8-12=4/4 | | 120+w=180 | | 300-6.9x=60 | | X+x-5=8-2 | | -7a=7 | | 12x-5(1x+4)=-20 | | -4=-8w+2(w+4) | | 42-5q=7 | | 5=2x-12 | | k2−16k+64=0. | | l(1/4l)=9 | | 5p-11=8p+4= | | 2x+3(5x-7)=43+x | | 45=9(j+3) | | 3(2z=8)-6 | | (5xY)-4=26 |